Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper.

نویسندگان

  • E Bullitt
  • C H Jones
  • R Striker
  • G Soto
  • F Jacob-Dubuisson
  • J Pinkner
  • M J Wick
  • L Makowski
  • S J Hultgren
چکیده

The major subassemblies of virulence-associated P pili, the pilus rod (comprised of PapA) and tip fibrillum (comprised of PapE), were reconstituted from purified chaperone-subunit complexes in vitro. Subunits are held in assembly-competent conformations in chaperone-subunit complexes prior to their assembly into mature pili. The PapD chaperone binds, in part, to a conserved motif present at the C terminus of the subunits via a beta zippering interaction. Amino acid residues in this conserved motif were also found to be essential for subunit-subunit interactions necessary for the formation of pili, thus revealing a molecular mechanism whereby the PapD chaperone may prevent premature subunit-subunit interactions in the periplasm. Uncapping of the chaperone-protected C terminus of PapA and PapE was mimicked in vitro by freeze-thaw techniques and resulted in the formation of pilus rods and tip fibrillae, respectively. A mutation in the leading edge of the beta zipper of PapA produces pilus rods with an altered helical symmetry and azimuthal disorder. This change in the number of subunits per turn of the helix most likely reflects involvement of the leading edge of the beta zipper in forming a right-handed helical cylinder. Organelle development is a fundamental process in all living cells, and these studies shed new light on how immunoglobulin-like chaperones govern the formation of virulence-associated organelles in pathogenic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism.

Gram-negative pathogens commonly use the chaperone-usher pathway to assemble adhesive multisubunit fibers on their surface. In the periplasm, subunits are stabilized by a chaperone that donates a beta strand to complement the subunits' truncated immunoglobulin-like fold. Pilus assembly proceeds through a "donor-strand exchange" (DSE) mechanism whereby this complementary beta strand is replaced ...

متن کامل

PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA.

Adhesive P pili of uropathogenic Escherichia coli were not assembled by a strain that lacks the periplasmic disulfide isomerase DsbA. This defect was mostly attributed to the immunoglobulin-like pilus chaperone PapD, which possesses an unusual intrasheet disulfide bond between the last two beta-strands of its CD4-like carboxyl-terminal domain. The DsbA-dependent formation of this disulfide bond...

متن کامل

Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly.

The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a c...

متن کامل

Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus.

The class of proteins collectively known as periplasmic immunoglobulin-like chaperones play an essential role in the assembly of a diverse set of adhesive organelles used by pathogenic strains of Gram-negative bacteria. Herein, we present a combination of genetic and structural data that sheds new light on chaperone-subunit and subunit-subunit interactions in the prototypical P pilus system, an...

متن کامل

Molecular mechanism of P pilus termination in uropathogenic Escherichia coli.

P pili are important adhesive fibres that are assembled by the conserved chaperone-usher pathway. During pilus assembly, the subunits are incorporated into the growing fibre by the donor-strand exchange mechanism, whereby the beta-strand of the chaperone, which complements the incomplete immunoglobulin fold of each subunit, is displaced by the amino-terminal extension of an incoming subunit in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 23  شماره 

صفحات  -

تاریخ انتشار 1996